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LETTER TO THE EDITOR 

On the Schrodinger equation for the gaussian potential 
-A exp(-Ar2) 

C S Lai 
Department of Physics, University of Prince Edward Island, Charlottetown, Prince Edward 
Island, Canada C1A 4P3 

Received 16 February 1983 

Abstract. The energy eigenvalues of the attractive radial gaussian potential for various 
eigenstates are very accurately determined within the framework of the hypervirial-Pad6 
scheme. 

The attractive radial gaussian potential of the form 

V(r) = -A exp(-Ar2) 

is of importance in nuclear physics. It has been used as a potential model in the 
theory of nucleon-nucleon scattering (Buck et a1 1977). The bound-state energies of 
the gaussian potential were first computed by Buck (1977) using direct numerical 
integration, and by Stephenson (1977) using the Liouville-Green asymptotic method. 
Recently, Bessis et a1 (1982) have obtained the bound-state energies of the potential 
(1) for A = 1 using a perturbational and also a variational treatment on a conveniently 
chosen basis of transformed Jacobi functions. It is shown that the traditional Rayleigh- 
Schrodinger method on the chosen basis can yield fairly accurate results. 

Meanwhile, it has been shown that many problems of screened potentials (Lai 
1981, 1982, Lai and Lin 1982) can be solved to a very high accuracy by using the 
hypervirial relations (Hirschfelder 1960, Swenson and Danforth 1972) and the Pad6 
approximant method (Baker 1965, Killingbeck 1978). In the present paper, we would 
like to report that the bound-state energies of the gaussian potential (1) for various 
eigenstates can be accurately calculated within the framework of this hypervirial-Pad6 
scheme. 

Let us study the Schrodinger equation for the attractive radial gaussian potential 
(1) 

R -A exp(-Ar2)R = E R ,  1 d 2dR 1(1+1) -- - 
r2 dr ( r  d r ) + T  

where the units 2m = h =  1 are used. If we introduce the function u(r)  = rR(r),  and 
expand the exponential exp(-Ar2) in powers of r2, we find from equation (2) 

d2 1(1+1) + 1 A *VkrZkt2) U = E’U, 
k = O  

(3) 

where E’ = E  +A, and the potential V’(r) in the above one-dimensional Schrodinger 
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equation can be written as 

+ l )  + f A k v k r 2 k + 2 ,  

r k =O 
V’(r) = 7 ( 4 )  

with the potential coefficients v k  given by 

v k  = ( - l ) k o 2 / ( k  + I ) ! ,  k #O. ( 5 )  2 V o = A h = w ,  

We note that, in (3) ,  u ( r )  must vanish at r = 0, and that the energy series E’ obtained 
from ( 3 )  will be asymptotic for large A. 

We now proceed to solve (3)  with the use of the hypervirial-Pad6 scheme (Killing- 
beck 1978, Lai 1981). Corresponding to the energy E’ =E +A for the Schrodinger 
equation (3) ,  the Hamiltonian H’ is given by 

( 6 )  

where V’(r) is defined by (4). If we now apply the hypervirial theorems to the 
Hamiltonian H’, we obtain the following hypervirial relations (Swenson and Danforth 
1972): 

(7) 

Let us assume that the energy E’ and the expectation values ( r N )  can be expanded in 
power series of the perturbation parameter A as 

H’ = -d2/dr2 + V‘(r), 

E’(rN) = i (N + 1)-’(rN+’ dV’/dr) + (rNV’) -&(N - l ) ( r N W 2 ) .  

where Cik) = 6Ok. The unperturbed value of in ( 8 )  is given by 

E;‘’’ = o (2j  + l ) ,  i # O ,  (10) 

where j is the quantum number for the harmonic oscillator and j # 0 as required by 
the condition U ( r  = 0)  = 0 (Landau and Lifshitz 1963). The unperturbed values of 
C‘O’ can be derived from the hypervirial relations (7). 

From the Hellman-Feynman theorem, we obtain the relation (Lai 1981) 

Substituting ( 8 )  and ( 9 )  into (7), we obtain also the following relations 
coefficients C$) and the energy coefficients E‘k’: 

(11)  

between the 
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where N are even numbers, and the potential coefficients v k  are given by ( 5 ) .  The 
recurrence relations (1 1) and (12) can be used to evaluate the energy coefficients 
from a knowledge of CC) and E(m)  with m s k -2  in a hierarchical manner (Lai 
1982). For example, the energy eigenvalues of equation (2), up to the third order of 
A, are found as 

E = -A + 2wa -$[U ' - $ l ( l+  1) +:]A - ( ~ / 9 6 ~ ) [  1 la' - 31(1+ 1) ++]A 

- (1 /1536w2) [85a4+&2-e -6~21( l+  1) -  1512(1 + 1)' 

+? l(l+1)]A3+ ..., 

where w = 1 < j ,  and a = j +$ with j = 1 , 2 , 3 , .  . . . We note that 1 takes the 
values 0 ,2 ,4 ,  . . . for odd j and 1 ,3 ,5 ,  . . . for even j (Landau and Lifshitz 1963). 

The energy series (13) is asymptotic for large A. However, we can calculate the 
bound-state energies E to a very high accuracy by forming the Pad6 approximant to 
the energy series (Killingbeck 1978, Lai 1981). We confine ouselves to the calculation 
of the [lo, 101 Pad6 approximant to the energy series (Baker 1965) 

where Eo = -A + w (2j + 1) as defined by (3). 
Our calculated energy values of the [lo, 101 Pad6 approximant for the states n 

and 1 = 0-7 with A = 1 are shown in table 1. Instead of using the quantum number j 
of the unperturbed harmonic oscillator, we use here the customary quantum number 
n for the particle levels in the nucleus. Our results are compared with those obtained 
from numerical integration (Buck 1977), and those calculated by Bessis et a1 (1982) 
using the perturbational and variational treatment on a conveniently chosen basis of 
the transformed Jacobi functions. It appears from table 1 that the results of the 
present calculation are in total agreement with those of numerical integration (Buck 
1977). 

In conclusion, we have shown that the bound-state energies of the attractive radial 
gaussian potential can be accurately determined within the simple framework of the 
hypervirial-Pad6 scheme. With the introduction of the screening parameter A in the 
gaussian potential V(r) = -A exp(-Ar2), the present method of calculation is therefore 
more general than the perturbational and variational calculations of Bessis eta1 (1982). 

This work was supported by the Natur3l Sciences and Engineering Research Council 
of Canada. 
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